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CALCULATION OF THE EVOLUTION OF PLASTIC YIELDING AT THE TIP OF A CRACK 

AND RELATED PHENOMENA 

D. N. Karpinskii and S. V. Sannikov UDC 539.4.015:539.37 

The results of a computer calculation of the evolution of plastic yielding at the tip 
of a crack in a crystal are presented. The plastic yielding at the tip of the crack is due 
to thermally activated motion of dislocations in active slip planes of the crystal with the 
simultaneous action of an external tensile stress and thermal fluctuations. The plastic 
yielding and stress distributions at the tip of the crack at different instants of time are 
obtained. The effect of the plastic zone on the stress intensity factor (SIF) of the crack 
is calculated. 

i. Introduction. In recent years microscopic models of the processes occurring in the 
neighborhood of a crack have become more and more widely used when investigating the mechanics 
of fracture. New ideas (the J-integral, the fine structure of the plastic zone, including the 
dislocation-free zone, etc.) have been proposed to describe them, while direct electron-micro- 
scope observations of the defect structure of the material in the region of the tip of the 
crack have, in turn, enabled the representation of the mechanics of fracture and the physical 
nature of the constants by which they operate to be refined. 
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The common feature of the development of macroscopic cracks is the formation in front 
of them of the tip of a plastic zone of different form, the dimensions of which in plastic 
materials are often comparable with the length of the crack. However, there is still in- 
sufficient information on the actual structure of the plastic zone and the laws governing its 
evolution in different materials and under different loading conditions to be able to draw 
generalizing conclusions on how the fracture process develops under different conditions [i]. 

Experimental Results. In [2] it was possible to observe directly, using a transmission 
electron microscope, the modes of formation of a crack with a plastic zone in stainless steel 
with resolution of individual dislocations, under conditions III. An analysis of the con- 
trast showed that the dislocations are cleaved screw dislocations. Their total number 
(greater than 300) corresponds to complete mutual displacement of the edges of the crack of 
about 90 ~m, which does not agree with theory [3]. This is obviously due to the complex 
geometry of the specimen - a thin foil of varying thickness, in which the crack grows from a 
thin edge, and in which (due to image forces) dislocations of the same kind are repelled 
more weakly than in the bulk material. 

Another feature of the plastic zone was observed in [4], namely, in a part of the plastic 
zone, in the immediate vicinity of the tip of the crack, no dislocations are observed (there 
is a dislocation-free zone). This effect is due to the fact that in the immediate vicinity 
of the tip of the crack the acting stress is so high that it cannot be counterbalanced by the 
stress from the dislocations in the plastic zone. A detailed investigation of the disloca- 
tion-free zone at the tip of the crack in bulk metal crystals was carried out in [5]. 

Some Physical Models. Since a simple dislocation description of a crack with a plastic 
zone is available (proposed in [3] - the BCS model) which enables experimental data on the 
structure of the plastic zone to be interpreted quite easily, we will dwell in more detail on 
this model. In it the stressfield of a plane crack of length 2s under a stress 6 is described 
by the distribution of cleavage dislocation in the section (-s s The actual dislocations 
are distributed in the plastic zone (-a, -s (s a). An external stress o acts on the cleav- 
age dislocations, and a stress o - o 0 (60 is the lattice friction stress) acts on the disloca- 
tions in the plastic zone. The condition of equilibrium reduces to an integral equation for 
the distribution function p(x) of the dislocations 

~b ~ p (x') dx' 
3 ~---7-c --=~(x)-%'x' (1.1) 
0 

from the  s o l u t i o n  o f  which ,  in  p a r t i c u l a r ,  t h e  f o l l o w i n g  r e l a t i o n  i s  o b t a i n e d :  

t a ~ (I 2) -- ~ COS-- 
a 2 % 

(~ i s  t he  s h e a r  modulus  and b i s  t h e  B u r g e r s  v e c t o r ) ,  d e f i n i n g  t h e  d i m e n s i o n s  o f  t h e  p l a s t i c  
zone f o r  a s p e c i f i e d  c r a c k  l e n g t h  s and a l s o  an e x p r e s s i o n  f o r  t h e  mu tua l  d i s p l a c e m e n t  o f  
t h e  edges  o f  t h e  c r a c k  ~ ,  which  i s  e q u a l  t o  t h e  o v e r a l l  Bu rge r s  v e c t o r  o f  a l l  n d i s l o c a t i o n s  
in the cluster in (+0, ~): 

l 
4%l a 

~ = b  p (x ' )dx '=- - -~ ln -v .  
0 

The BCS model was g e n e r a l i z e d  t o  t h e  c a s e  o f  p l a s t i c  zones  c o n s i s t i n g  o f  s e v e r a l  c l u s t e r s  
o f  d i s l o c a t i o n s  in  s l i p  p l a n e s  i n c l i n e d  t o  t h e  p l a n e  o f  t h e  c r a c k  a t  an a n g l e  a .  The d i s t r i -  
b u t i o n  o f  t h e  d i s l o c a t i o n s  in  t h e  c l u s t e r s ,  t h e  s t r e s s  a t  t h e  t i p ,  t h e  o p e n i n g  o f  t h e  t i p  o f  
t h e  c r a c k  6, and t h e  v a l u e  o f  t h e  J - i n t e g r a l  were o b t a i n e d  in  [6] as  a f u n c t i o n  o f  t h e  a n g l e  
of inclination a and the applied stress. A similar model was calculated in [7], where, in 
particular, an approximate expression was obtained for the distance Au between the edges of 
the crack at the point x - s as a function of the length of the crack s 

Au--6~(l--x) [ i n ( l - - x ) ]  ~, ~ 1 ,  

and i t  was a l s o  found  t h a t  t h e  main t e n s i l e  s t r e s s  i s  an o r d e r  o f  m a g n i t u d e  g r e a t e r  t h a n  t h e  
main s h e a r  s t r e s s  a l o n g  t h e  e x t e n s i o n  o f  t h e  p l a n e  o f  t h e  c r a c k  in  t h e  r e g i o n  o f  i t s  t i p .  

The o c c u r r e n c e  o f  d i s l o c a t i o n s  o f  o p p o s i t e  s i g n  d i r e c t l y  a t  t h e  t i p  in  a model  c l o s e  t o  
[ 3 ] ,  was found  in  [ 8 ] .  I t  was assumed in  [ 8 ]  t h a t  t h e s e  " n e g a t i v e "  d i s l o c a t i o n s  (due  t o  t h e  
e f f e c t  o f  image f o r c e s )  a c c u m u l a t e  a t  t h e  c r a c k  and b l u n t  i t .  
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The behavior of the dislocations in the plastic zone was considered in [9]. Here the 
conditions for the generation of dislocation loop-dipoles in the region of the crack and the 
equilibrium configurations of the dislocations are calculated in the discrete approximation. 

Screening of the elastic field of the crack by dislocations situated in the plastic zone 
in different configurations were considered in [10, Ii]. In the simplest case of 2N - 1 simi- 
lar screw dislocations, parallel to the tip of the crack of transverse shear (mode III), and 
situated equidistantly on the surface of a cylinder of radius r*, whose axis coincides with 
the tip of the crack, the reduction in the stress intensity factor is 

~b 4s (1.3) K D  = ] / ~ ,  - .  

F o r  a d i s l o c a t i o n  d e n s i t y  p = 10 z~ cm - 2  a n d  N ~ 194  ' we h a v e  KD = - 5 0  M P a ' m  1 / 2 ,  w h i c h  i s  c o m -  

p a r a b l e  with the fracture viscosity of steel at medium temperatures. Consequently, the in- 
crease in K c in plastic yielding is due not only to blunting of the crack, but also to screen- 
ing of elastic field by the dislocations. 

Hence, new physical models of the rearrangement of the dislocation structure at the tip 
of the crack in a highly deformed material has enabled the representations on the initiation 
and growth of cracks to be extended considerably. This paper is devoted to a further develop- 
ment of these ideas. 

2. The Dislocation Model of Plastic Yieldin~ at the Tip of a Fixed Plane Crack in a bcc 
Crystal. A Method of Calculating the Evolution of Plastic Yielding. A crack is situated in 
the (010) cleavage plane of an infinite crystal having a body-centered cubic lattice (Fig. I). 
A uniform stress Oyy(t) = o~(t), which increases monotonically to a value o a sufficient for 
plastic yielding o~ the crystal but insufficient to increase the crack, is applied to the 
y = • crystal planes. 

Plastic yielding of the crystal is deformation of pure shear along the {ii0} easy slip 
planes. The {ii0} planes, intersecting the xy plane, form two families of slip lines $j 
(j = i, 2). The positive directions on the lines are specified by the unit vectors ej, making 
angles Sj = (z/2)j - ~/4 with the x axis. The St. Venant plasticity criterion holds for the 
crystal with a correction for local strengthening of the material. Sources of rectilinear 
dislocations, perpendicular to the xy plane, are distributed uniformly over xy in the crystal, 
generating edge dislocations with Burgers vectors • 

As a result of the concentration of the stress at the tip of the crack and the relaxation 
of the stresses by plastic yielding [12], high densities of effective dislocations are reached 
in this region (excess dislocations of one sign among dislocations with parallel Burgers vec- 
tors) and, consequently, an internal elastic field arises [which does not disappear when the 
external load o~(t) is removed], which has a considerable effect on the evolution of plastic 
yielding. 

The plastic zones formed in the crystal are immediately adjacent to the tips of the crack 
and have linear dimensions in the xy plane that are so much smaller than s that we are justi- 
fied in describing the plastic yielding of the crystal at an individual crack tip as plastic 
yielding at the tip of a semiinfinite crack. 

The rate of plastic yielding in the crystal is determined by the slip of the dislocations 
along g. (j = i, 2) with thermally activated surmounting of the energy barriers [13], and over 

3 
an area with normal nj(nl = e2, n2=--el) at the crack tip has the form 
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dsi (r'dt t) = e o" exp ;[-- U~ <t--'[(~ (r'KT t)/'~~ sign~ t), ( 2 . 1 )  

where r =xe~ + ye~, (x, y) are the coordinates of the point of the plane in a Cartesian rectan- 
gular system of coordinates xy, e~ and e~ are unit vectors specifying the positive direction 
of the axes of the xy system of coordinates, e0, T0, U0, K, T are constants (U 0 is the activa- 
tion energy, K is Boltzmann's constant, and T is the temperature), and 

{~J(r, t ) - - a s ( r ,  t)sign~J(r, t), i f  [GJ(r, t) i > [ ~ s ( r ,  t)l, ( 2 . 2 )  
~ ( r , l ) =  O, i f  ioS(r,t) l~<l~(r,t)l 

is the effective shear stress on the area with normal nf. In (2.2) o~(r, t) is the shear stress 
determined by the components of the stress tensor 

~(r, t ) =  a~(r, t )§  ~(r,  t), ( 2 . 3 )  

characterizing the elastic field in the region of the crack tip, while 

o,(r, t ) = o 0 §  t) (2.4) 

is the stress impeding plastic shear due to friction of the lattice o0 and local strengthening 
of the material of. In (2.3) 

or t)=Kr (2.5) 

is the stress field external to the crystal [which disappears together with o~(t)], which is 
determined by the Westergaard formulas [14] corresponding to the type of loading for the 
linear asymptotically elastic field at the tip of the crack, while 

o I (r, t) = 2 [ ou (r, r') Ap~ (r', t) dr' ( 2 . 6 )  
h=l D~ 

is the stress field produced at the tip of the crack by dislocations of the plastic zone. To 
calculate af in (2.4) we will use the relation 

~s(r, l) = ~1 1 eJ(r, t)l ( 2 . 7 )  

(o 1 and m a r e  c o n s t a n t s )  which  i s  a g e n e r a l i z a t i o n  o f  t h e  e m p i r i c a l  r e l a t i o n s h i p  o f  = o l e  m 
[13] .  In  ( 2 . 5 )  KC(t) = o ~ ( t ) ~  i s  t h e  I r v i n e  s t r e s s  i n t e n s i t y  f a c t o r  and ( r ,  0) a r e  p o l a r  
c o o r d i n a t e s  ( s e e  F ig .  1) .  In  ( 2 . 6 )  ~( r ,  r ') i s  t h e  s t r e s s  t e n s o r  o f  t h e  edge  d i s l o c a t i o n  o f  
t h e  c r y s t a l ,  which i n t e r s e c t s  t h e  xy p l a n e  a t  t h e  p o i n t  r ' ,  which  has a Burge r s  v e c t o r  be~ 
and i s  r e l a t e d  to  t h e  d i s c o n t i n u i t y  o f  t h e  d i s p l a c e m e n t s  on t h e  p a r t  ~h(r') l y i n g  a t  t h e  p o i n t  
r' while 

1 d k ' Aph(r' , t)  b d~ ~ ( r ,  t) ( 2 . 8 )  

ris the density at the point r' of effective dislocations with Burgers vector be~ [15]. Both 
!~(r, r')i and oe(r, t)were calculated using the linear theory and correspond to the Inglis-Grif- 
/fiths-Irvine model of a brittle crack. 
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Equations (1.1)-(1.8) form a system from which, with the initial condition 

e J ( r , t = O ) = O ,  a : ( t = O ) = O  

and the boundary condition 

aT, o~(x<O,  g=O,  t ) = O ,  
#( r ,  t) and o(r,  t) a r e  f o u n d .  

The integration in (2.6), the differentiation in (2.8), and the integration of the dif- 
ferential equation (i.i) are carried out numerically. The integrals in (2.6) were evaluated 
using the rectangle rule, and to calculate the derivatives in (2.8) we used their simplest 
representation by central finite differences; the differential equation (I.i) was integrated 
using the explicit Euler difference scheme 

8J (r, t~) = Ate_& exp {-- U~ (1 -- [o{ (r,s ]~'~> }sign oi (r, t~_,) + ~J (r, t~_,) 

(t i = ti_ l + 5ti_ I) with an integration step ~t which varied depending on the computational 
situation. Since the problem is symmetrical about the x axis the calculations were only 
carried out for the upper half-plane. 

3. Method of Calculating the Evolution of the Stress Intensity Factor of a Crack in the 
Crystal. We have the following relation for the stress intensity factor of a crack: 

K ( t )  = K~( t )+  K ' ( t ) ,  

where KC(t) is the term of the stress intensity factor of the crack ignoring the effect of 
plastic yielding on it, while KP(t) is determined exclusively by this effect: 

t)d  '. 
Dh 

The contribution to KP(t) by an individual dislocation situated at the point z' = x' + iy' 
in the complex plane, is calculated from the formula [16] 

0 

Z')] d; 

V ~  ' 

f r om w h i c h ,  c a r r y i n g  o u t  t h e  i n t e g r a t i o n ,  we o b t a i n  

Here 

KP (z', ~k) = Re ~ [J1 sin ~ - -  i ]  2 cos ~h]. 

A = 2,~ (t - v) '  arl = - -  ~ @ 2 V~ -7 2 (z') 3 / ~  ; Y~- : - ~ J-  ~ 2  V~  7 "j- ~ ' ; 

p is the shear modulus and ~ is Poisson's ratio. 

4. Results of Computer Calculations and Conclusions. Calculations were carried out for 
a crystal of ~-Fe with the following values of the constants: s = 1 mm, r 0 = 0.i pm, Ax = 1 

pm, o a = 6 MPa, E 0 = I011 sec -I, U 0 = 0.9 eV, x 0 = 330 MPa [17], T = 300 K, o 0 = 18 MPa, 
b = 2.47.10 -4 pm, 01 = 2 GPa, p = 60 GPa [18], and v = 0.3. The crystal was loaded at a rate 
o k = 20 MPa.sec -I from 0 to o a. After reaching the upper loading limit the external tensile 
stress remained constant. 

The calculations showed that two stages can be distinguished in the evolution of #(r,t). 
In the first stage (from t = 0 to t = 2.5 sec) the plastic zone gradually grows, its shape 
changes in a similar way to itself, and the distribution eJ(r, t) in the plastic zone is largely 
a repetition of the distribution o~(r,t), and in the second stage (when t > 2.5 sec) a con- 
siderable change occurs in the form of the plastic zone and the redistribution of ~J(r, t) in 
it due to the effect of the dislocation structure of the crystal. Note that there are con- 
siderable quantitative discrepancies in the distribution of #(r,t) and o~(r,t), which become 
greater as the plastic yielding process develops (Fig. 2a, b). 

Calculations showed that there is a lag between K(t) and KC(t), its development is ex- 
tremely nonharmonic, and there is a tendency for it to decrease (and consequently there is an 
increase in the margin of stability of a fixed crack) during plastic yielding at the tip of 
the crack (Fig. 3). 
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Fig. 3 

Hence, our calculations have given the following main results: 

i) the evolution of the elastic field of the crystal due to a change in its dislocation 
structure at the tip of a crack has a considerable effect on the development of plas- 
tic yielding in this region; 

2) plastic yielding at the tip of a crack in a crystal usually increases the stability 
of the crack. 
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